Mathematical Economics

FIRST EXAM
January 17, 2023
Maximum duration: 2h30m

PART I

(1) Consider the following correspondence $F:[0,1] \rightrightarrows[0,1]$,

$$
F(x)= \begin{cases}\{4 x(1-x)\}, & x<\frac{1}{2} \\ {[a, b],} & x=\frac{1}{2} \\ \{2 x-1\}, & x>\frac{1}{2}\end{cases}
$$

where $0 \leq a \leq b \leq 1$.
(a) Determine the value of a and b such that F satisfies the assumptions of the Kakutani fixed point theorem. (1 point)
(b) Find the fixed points of F for the value of a and b found in (a). In case you did not solve (a), you may take $a=b=\frac{1}{2}$. (1 point)
(2) Consider the following sets

$$
\begin{aligned}
& A=\left\{(x, y) \in \mathbb{R}^{2}: x^{2}+y^{2} \leq 1\right\}, \\
& B=\left\{(x, y) \in \mathbb{R}^{2}:|y-3| \leq 1\right\} .
\end{aligned}
$$

(a) Show that A and B can be separated by a hyperplane. (1 point)
(b) Using the Brouwer fixed point theorem, show that $f: A \rightarrow$ \mathbb{R}^{2} defined by

$$
f(x, y)=\left(\frac{y^{2}}{2}, \frac{x+y}{2}\right)
$$

has a fixed point in A. (1 point)
(c) Compute the fixed point(s) of f. (1 point)

PART II

(1) Find and classify the critical points of

$$
f(x, y, z)=x \log y+2 x+z^{2}-z, \quad x, z \in \mathbb{R}, y>0
$$

(2 points)
(2) Consider the following utility maximization problem. Suppose that there are two goods and an agent with income $m>1$ who wishes to maximize her utility

$$
U(x, y)=\sqrt{x y}, \quad x>0, \quad y>0
$$

subject to a budget constraint $p x+y \leq m$ where $p \in[0,1[$.
(a) Write down the necessary conditions to solve the utility maximization problem. (1 point)
(b) Find the solution of the problem assuming $m=4$ and $p=\frac{1}{2}$. (2 points)

PART III

(1) Consider the initial value problem (IVP)

$$
x^{\prime}(t)-t x(t)=t, \quad x(1)=0
$$

(a) Classify the ODE. (0.5 points)
(b) Solve the IVP. (1.5 points)
(2) Consider the scalar ODE

$$
x^{\prime}=x(1-x)(1+x) .
$$

(a) Determine and classify the equilibrium points. (0.5 points)
(b) Sketch the phase portrait. (1 point)
(3) Solve the IVP,

$$
x^{\prime \prime}+2 x^{\prime}+x=1, \quad x(0)=-1, \quad x^{\prime}(0)=1 .
$$

(1.5 points)
(1) Consider the calculus of variations problem

$$
\min _{x(t)} \int_{0}^{1} 2 e^{t} x(t)+\dot{x}^{2}(t) d t
$$

where $x(0)=0$ and $x(1)$ is free.
(a) Write the corresponding Euler-Lagrange equation. (1 point)
(b) Find the solution to the calculus of variations problem. (1.5 points)
(2) The one year investment problem for a firm is

$$
\max _{I(t)} \int_{0}^{1}\left(K(t)-\frac{I(t)^{2}}{2}\right) e^{-t} d t
$$

subject to capital accumulation equation, $\dot{K}=I$, the initial condition for the capital stock, $K(0)=K_{0}>0$, and a final threshold $K(1) \geq K_{0}$. In the model, the variable I represents investment.
(a) Write the first-order optimality conditions according to the Pontryiagin's maximum principle. (0.5 points)
(b) Find the explicit solution to the problem. (2 points)

